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Abstract: This research aims to develop an autonomous drone system for early detection 

of forest fires. By integrating specialized sensors with AI algorithms, the drone can quickly 

identify fire outbreaks in remote areas, enabling prompt responses to potential threats. The study 

provides a detailed analysis of sensor capabilities and data collection methods to optimize 

detection accuracy. Advanced AI algorithms, such as machine learning and computer vision 

techniques, are utilized to enhance real-time data processing and decision-making. The system 

architecture is robust and scalable, allowing deployment in diverse forest environments. The 

focus is on ensuring the drone's autonomy for navigating challenging terrains and performing 

continuous monitoring without human intervention. Regulatory compliance is addressed by 

thoroughly examining current aviation and environmental laws, ensuring the drone operates 

within legal frameworks while maximizing efficacy. Field trials in various forest regions 

demonstrate the system's effectiveness in early fire detection, with case studies showing its 

success in preventing fire escalation. The research highlights the potential for integrating this 

technology into existing forest management practices, offering a cost-effective and sustainable 

solution for fire prevention. 
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  1. INTRODUCTION AND LITERATURE REVIEW 

 

  Forest fires are among the greatest natural hazards we face, with devastating 

consequences for the environment, including the destruction of vast forest areas, natural 

habitats, and various species of plants and animals. These disasters also pose a direct 

threat to human life and well-being. Consequently, early detection of these fires is 

essential for the effective prevention and management of such emergencies, enabling 

rapid intervention and limiting the spread of flames. Traditional detection methods, such 

as human observations and reports from residents, are often inefficient and can lead to 

significant delays in reporting fires. Therefore, a technological and innovative approach 

is necessary to improve the efficiency of the detection process and reduce response time. 
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  Protecting human life is a critical reason for the early detection of forest fires. 

These fires can endanger the lives of people, both those directly involved in firefighting 

and residents of affected areas. Early detection allows for the rapid initiation of 

intervention operations and the preventive evacuation of people from threatened areas, 

thereby reducing the risk of loss of human life. Furthermore, early detection is vital for 

saving natural habitats and biodiversity. Forests are invaluable ecosystems that house a 

wide variety of plant and animal species. Forest fires can irreversibly destroy these 

habitats and cause a loss of biodiversity. Detecting fires in their early stages allows for 

swift and effective intervention to limit the spread of the fire and protect the forest's flora 

and fauna. 

  In addition to protecting life and biodiversity, early detection helps in conserving 

natural resources. Forests play an essential role in conserving soil, water, and air. Forest 

fires can lead to soil erosion, pollution of water sources, and degradation of air quality. 

Early detection enables the implementation of preventive and intervention measures to 

minimize the impact on natural resources and facilitate ecosystem regeneration. 

Moreover, reducing material losses is another significant benefit of early detection. 

Forest fires can cause substantial damage to private properties, infrastructure, and the 

local economy. Quick detection allows for the rapid intervention of firefighting teams 

and the implementation of adequate protection measures, thereby reducing material 

losses and the costs associated with reconstruction and recovery. 

Efficiency in emergency management is also greatly enhanced by early 

detection of forest fires. It provides the opportunity to efficiently coordinate intervention 

operations by directing human and material resources to affected areas. The use of 

autonomous drones for fire detection can cover large areas in a short time, providing 

real-time information and images to intervention teams, facilitating appropriate decision-

making and actions. In conclusion, early detection of forest fires is crucial for protecting 

human life, saving natural habitats and biodiversity, conserving natural resources, 

reducing material losses, and improving efficiency in emergency management. 

           The paper by Chahil Choudhary, Anurag, and Pranjal Shukla [1], aims to develop 

a robust ML model for detecting forest fires using drone imagery. The primary objective 

is to leverage the capabilities of machine learning to process and analyse the vast 

amounts of data generated by drones, thereby identifying patterns and anomalies 

indicative of forest fires. The proposed model is intended to improve the speed and 

accuracy of forest fire detection, thus enabling quicker response and mitigation efforts.   

  The primary objective of the FireFly Project [2] is to develop an automated 

system that addresses the limitations of existing UAV technologies, which often struggle 

with early fire detection due to the limited resolution and sensitivity of thermal cameras. 

By combining UAVs with ground-based IoT sensors, the project aims to detect forest 

fires at their inception, even when obscured by dense tree canopies. This hybrid approach 

leverages the strengths of both aerial and ground-based systems to provide a more 

comprehensive and effective solution for forest fire monitoring and prevention. Another 

important paper is [3] by Sergey Filist et al., which demonstrates how a methodology 

and algorithm for autonomous UAV flight trajectory planning can improve the early 

detection of ignition sources. The proposed method involves three distinct flight plans 

covering area surveillance, navigation to the fire source, and return to the departure 
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point. The mathematical modelling of the UAV flight control algorithm, executed using 

MATLAB® R2019b, demonstrated control stability and accelerated identification of the 

ignition source coordinates, exceeding the set goals by 1.5 to 2 times. The paper [4] by 

Rodrigo De la Fuente, Maichel M. Aguayo and Carlos Contreras-Bolton, demonstrates 

how an integrated forest fire monitoring system can be optimized using a combination 

of surveillance towers, monitoring balloons, and drones. The authors develop a mixed-

integer linear programming (MILP) model that optimizes the location of these 

monitoring technologies and the routing of drones to ensure extensive terrain coverage 

while minimizing costs. The proposed algorithm includes six components: a solution 

procedure, perturbation procedures, local search procedures, a call to a general-purpose 

solver for the MILP model, a global reset strategy, a local reset strategy, and an 

acceptance criterion. 

The research tests the model and algorithm on both random instances and a real-

life case study in Chile, showing that while the MILP model can solve small instances, 

the algorithm can find good-quality solutions for all instances. This study provides 

valuable insights for the government and private sector in designing an integrated fire 

monitoring system that leverages the strengths of watchtowers, monitoring balloons, and 

drones, aiming to enhance early detection and response to forest fires. 

 

2. PROBLEM CONTEXT 
 

 Forests face threats from various factors, both abiotic and biotic. Non-living 

factors include fires, drought, storms, and air pollution, while living factors encompass 

animals, insects, and diseases. Fires, a common abiotic threat in the Mediterranean 

region, have been increasing alongside major storms, averaging two per year over the 

last six decades. Air pollution, primarily from vehicles and factories, also endangers 

forests. Additionally, the expansion of transportation infrastructure fragments forests, 

posing a significant threat to biodiversity. Overall, approximately 6% of forested areas 

are impacted by at least one of these factors [5, 6]. 

  European forests are significantly affected by climate change, which varies 

across different regions, influencing forest growth rates, forested areas, and species 

diversity. These changes also affect the spread of living organisms, such as parasites, 

and the frequency and intensity of extreme weather events. Key challenges include the 

forests' ability to adapt to these changes and their role in mitigating them, such as using 

wood instead of non-renewable resources for energy and materials [7]. 

Historically, forest fire detection relied on human observations and reports from 

residents or observation towers, which had several drawbacks: delays in reporting, 

difficulty accessing remote areas, and reliance on weather conditions for visibility.   

  Recently, unprecedented and devastating fires have occurred globally, affecting 

areas from the United States to Australia, Indonesia, Africa, the Amazon, and even the 

Arctic. In Europe alone, over 400,000 hectares of land are burned annually by vegetation 

fires, causing severe damage to protected areas. In 2023, over 48% of forest fires 

occurred in designated conservation zones. Variations in rainfall, frequency of lightning 

strikes, and temperature fluctuations contribute to the frequent and severe wildfires in 

various ecosystems, from boreal peatlands to tropical forests. Climate models predict 



DEVELOPING AN AUTONOMOUS DRONE FOR EARLY DETECTION  

OF FOREST FIRES 

298 

worsening weather conditions in most European regions under high-emission scenarios, 

leading to an increase in fire-prone areas and an extended fire season [5], [7]. 

 

3. PROPOSED SOLUTION 

 

  The current trend across all sectors is towards automating systems and providing 

autonomous tools to ease human labour. For the efficient early detection of forest fires, 

the proposed solution is an autonomous drone equipped with artificial intelligence for 

image processing. 

Designing the architecture of an autonomous drone for forest fire detection must 

consider the specific environmental requirements and the tasks the drone needs to 

perform. This involves careful planning and evaluation of available hardware and 

software components, as well as integration and communication with other systems and 

teams [8], [9]. A well-designed architecture ensures the efficient and reliable 

functionality of the autonomous drone, enabling early detection and effective 

management of forest fires. 

Key characteristics in drone design include: 

 Flight platform: selecting a suitable drone capable of carrying necessary 

equipment and sensors, with enough autonomy to cover large areas. 

 Specialized sensors: integrating appropriate sensors, such as thermal cameras, 

smoke sensors, gas sensors, and localization systems, to provide essential data 

for fire detection and monitoring. 

 Power system: ensuring a reliable power system, which may include batteries, 

additional power sources, or energy management systems to maximize the 

drone's autonomy during missions. 

 Automatic control system: developing an automatic control system that enables 

the drone to perform necessary tasks autonomously. This involves navigation 

and route planning algorithms, allowing the drone to follow predefined routes 

and avoid obstacles. 

 Fire detection algorithms: designing and implementing specialized algorithms 

for forest fire detection. These algorithms may use image analysis techniques, 

artificial intelligence, or other methods to identify specific signs and patterns of 

forest fires in collected images and data. 

To detect fires, the drone uses an OV7675 camera for continuous image capture, 

and artificial intelligence analyses the smoke's movements and path. Future 

enhancements include a module with a thermal camera and a visual spectrum camera to 

transmit images to a fire monitoring center and analyse the damage. The thermal imaging 

device measures the thermal radiation emitted by objects, identifying temperature 

changes specific to forest fires. Autonomous drones can use thermal cameras to detect 

and pinpoint heat sources related to fires, producing thermal images to highlight the 

affected regions. The self-flying drone also comes with communication and navigation 

equipment. It can send data and information immediately to the intervention team or a 

command centre using communication equipment, allowing for effective organization 

and a quick response to the wildfire. GPS technology enables the drone to track its 

location in real-time, making it easier to plan routes and closely observe the fire-stricken 
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region. To manage and control the drone, the H743 WING V3 with an ARM Cortex-M7 

processor is used, providing the computational power necessary for executing complex 

flight control algorithms. This ensures improved stability and accuracy while flying and 

offers advanced features like GPS navigation, waypoints, and automatic stabilization. 

The controller includes a gyroscope, a barometric altimeter, a MicroSD card slot as a 

black box, along with a current regulator and a voltmeter. To incorporate all features, 

two additional companion computers are used: an Arduino Nano 33 BLE and an Arduino 

Nano. The Nano model controller is a compact microcontroller, ideal for fitting into a 

drone without taking up too much space. Its small size allows for flexible positioning 

and installation within the drone's layout, and it can be programmed using the Arduino 

language, which is simple and user-friendly. 

 

4. MATHEMATICAL MODEL OF THE AUTONOMOUS DRONE 

 

  In this chapter, we will detail the mathematical model of an autonomous drone, 

covering the equations of motion, the forces and moments generated by the rotors, as 

well as the control model. These components are essential for understanding and 

simulating the behaviour of an autonomous drone. 

 

4.1 The equations of motion 

 

The equations of motion describe the translational and rotational dynamics of 

the drone. These are fundamental to understanding how the drone responds to various 

control inputs. 

The translational motion of the drone is governed by Newton's second law (1): 

 

𝑚
𝑑2𝑥

𝑑𝑡2 = 𝐹⃗ − 𝑚𝑔⃗    (1) 

where: 

 m is the mass of the drone. 

 𝑥⃗ = [𝑥, 𝑦, 𝑧]𝑇   represents the drone's position in Cartesian coordinates. 

 𝐹⃗  is the total force generated by the rotors. 

 𝑔⃗ = [0,0, −𝑔]𝑇 is the gravitational acceleration, with 𝑔 being the gravitational 

acceleration. 

This equation shows how the drone's acceleration depends on applied forces and 

gravitational force. 

The rotational motion is described by the moment equation: 

 

𝐼
𝑑𝜔⃗⃗⃗⃗

𝑑𝑡
= τ⃗⃗ − 𝜔⃗⃗⃗ × (𝐼𝜔⃗⃗⃗)    (2) 

where: 

 I is the inertia tensor of the drone. 

 𝜔⃗⃗⃗ = [𝑝, 𝑞, 𝑟]𝑇   is the angular velocity. 

 τ⃗⃗ is the total moment generated by the rotors. 

These equations (1), (2) describes how angular velocity changes over time based on 

applied moments and drone inertia properties. 
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4.2 Forces and moments generated by rotors 

 

Forces and moments generated by rotors are essential for controlling drone motion. 

Each rotor contributes to lift force generation and control moments. 

The force generated by a rotor can be modelled as: 

 

𝐹𝑖 =  𝑘𝑓𝜔𝑖
2     (3) 

where: 

 𝐹𝑖 is the force generated by rotor 𝑖. 
 𝑘𝑓 is a thrust coefficient. 

 𝜔𝑖 is the angular velocity of rotor 𝑖. 
 

The moment generated by a rotor is given by: 

 

τ𝑖 =  𝑘𝑚𝜔𝑖
2     (4) 

where: 

 τ𝑖 is the moment generated by rotor 𝑖. 
 𝑘𝑚 is a moment coefficient. 

 

Typically, a quadcopter has four rotors arranged in a square. Opposite rotors spin in 

opposite directions to stabilize the drone and allow control over yaw movements 

(rotation around the vertical axis). 

4.3 Control model 

Drone control involves adjusting rotor speeds to achieve desired position and orientation. 

A PID (Proportional-Integral-Derivative) controller is often used for this purpose. 

The PID controller is defined by: 

 

𝑢(𝑡) =  𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(τ)𝑑τ + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
  (5) 

where: 

 𝑢(𝑡) is the control signal. 

 𝑒(𝑡) is the error, the difference between desired and current position. 

 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are the PID constants that adjust the proportional, integral, and 

derivative response. 

The PID control minimizes position and orientation errors, ensuring a stable and precise 

trajectory for the drone. 

The graphs (Figure 1) illustrate the dynamic behaviour of the drone as it attempts to 

reach and stabilize at a target position using a PID controller. The position graph 

indicates that the drone achieves significant vertical movement while maintaining 

relatively stable horizontal positions [10]. The velocity graph shows an initial 

acceleration followed by a deceleration, aligning with the position control strategy. The 

angular velocity graph reveals active rotational control, with oscillations in the x and y 

directions and a steady increase in the z direction, demonstrating the effect of applied 

moments for stability and orientation control. 
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Fig.1. Simulation of drone motion: position, velocity, and angular velocity over time 

 

Overall, the simulation results indicate effective control of the drone's position 

and orientation, achieved through the combined use of PID control for translation and 

constant moments for rotation. 

 

  5. NAVIGATION AND TRAJECTORY PLANNING 

 

  Navigation and trajectory planning are essential components in developing the 

software system of an autonomous drone, enabling it to move through a complex 

environment and perform specific tasks without human intervention. The navigation of 

an autonomous drone involves determining its position and orientation in space and 

calculating an optimal trajectory to reach a destination.  

Navigation algorithms rely on various techniques and sensors to ensure accuracy 

and reliability. The basic navigation system is satellite-based (GPS), which is frequently 

used for locating the drone in space. GPS provides precise coordinates of the drone's 

position, allowing it to move along predefined trajectories. For cases when the GPS 

signal is lost, I have created a Lua script for an inertial navigation system (INS), which 

uses accelerometers and gyroscopes to measure the drone's accelerations and angular 

velocities. These measurements are integrated to estimate position and orientation in 

real-time. I have also implemented a GSM module, allowing access to and viewing of 

the drone's telemetry at any time with Ardupilot software (Figure 2). 
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Fig.2. Ardupilot GUI 

 

  6. AI SYSTEM FOR FIRE DETECTION 

 

  To develop a robust AI system for fire detection [11], the Edge Impulse platform 

was utilized. This section outlines the comprehensive process of training the AI, from 

data collection to configuring the neural network structure. 

  The first step in training the AI system involves collecting relevant data. For this 

purpose, the camera on a smartphone was used to capture images.  

These images were taken in various conditions to ensure a diverse dataset, which 

is crucial for the model to learn to recognize fires in different scenarios and 

environments. Using the smartphone camera, a substantial amount of image data was 

acquired. This step is critical as the quality and diversity of the data directly impact the 

performance of the AI model. Images were captured in different lighting conditions, 

from various angles, and in multiple settings to cover a wide range of potential fire 

appearances. 

  Once a sufficient number of images were collected, the next step was to label 

the data. This involved identifying and marking the presence of fire in each image. 

Accurate labelling is essential as it teaches the model what to look for when detecting 

fires. Each image was carefully reviewed and annotated to ensure high-quality labelled 

data. 

  After labelling the data, the next step was configuring the training blocks on the 

Edge Impulse platform.  

The image size was standardized to 96x96 pixels (Figure 3). This size was 

chosen to balance the need for detail with the computational efficiency required for 

training the model. Smaller images are quicker to process, but they must still be large 

enough to capture the necessary features for fire detection. 
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Fig.3. Configuring image data and object detection settings on Edge Impulse platform 

 

  The next step was to define the labels that would be used during training. In this 

case, the primary label was "fire," indicating the presence of fire in the image. This label 

is crucial for the supervised learning process, where the model learns to associate 

specific features in the images with the labelled categories. 

  With the image size and labels set, the neural network structure was configured. 

The Edge Impulse platform provides various options for building and customizing neural 

networks. For fire detection, a Convolutional Neural Network (CNN) was chosen due to 

its effectiveness in image recognition tasks [12]. The CNN architecture was designed to 

include multiple convolutional layers, pooling layers, and fully connected layers to 

extract and learn features from the images efficiently (Figure 4). 

 

 
Fig.4. Neural network training and performance metrics for fire detection on Edge Impulse 

platform 
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After completing the rigorous training process using the Edge Impulse platform, the AI 

model for fire detection was successfully developed. The model underwent extensive 

training, as detailed in the previous steps, which included collecting a diverse dataset of 

images, accurately labeling them, and configuring the neural network structure. The 

training settings were meticulously chosen, with 60 training cycles, a learning rate of 

0.001, and data augmentation to enhance the model's robustness. 

  The neural network architecture was carefully designed, incorporating multiple 

layers to effectively learn and extract features necessary for accurate fire detection. The 

model's performance was evaluated, showing an F1 score of 53.8%, indicating a 

balanced precision and recall rate. The confusion matrix provided insights into the 

model's accuracy, with a high rate of correct classifications for both fire and non-fire 

images. 

  Upon completion of the training, the AI model was deployed and tested on new 

data. The accompanying image illustrates the successful identification of a fire, with the 

model confidently detecting a flame with a high confidence score of 1.00 (Figure 5). 

 

 
Fig.5. Fire detection AI model identifying a flame with high confidence 

 

  This result showcases the model's effectiveness in recognizing fire, even in 

varying conditions and settings, as captured in the diverse training dataset. 

This successful detection is a testament to the robustness of the AI model developed 

through a comprehensive training process. The precise identification of the fire in the 

image highlights the potential applications of this model in real-world scenarios, offering 

a reliable tool for early fire detection and prevention. The deployment of such an AI 

system can significantly enhance safety measures, providing timely alerts and enabling 

prompt responses to fire incidents.  
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  7. CONCLUSION 

 

  The research into developing an autonomous drone for early detection of forest 

fires has yielded promising and impactful results, showcasing a significant step forward 

in the realm of environmental monitoring and disaster prevention. The meticulous design 

process and integration of advanced technologies have demonstrated the feasibility and 

effectiveness of employing drones equipped with artificial intelligence for fire detection.   

  The core of this study lies in enhancing early detection capabilities, a crucial 

factor in initiating timely responses and preventing the devastating spread of forest fires. 

By leveraging specialized sensors and state-of-the-art AI algorithms, the autonomous 

drone system is able to promptly identify fire outbreaks. This not only helps in 

safeguarding vast forest ecosystems but also plays a vital role in protecting human lives 

and property in adjacent communities. The ability of the drone to detect fires early 

significantly mitigates the risks and potential damage, highlighting the system’s 

importance in contemporary forest management strategies. 

  The integration of artificial intelligence into the drone's functionality, 

particularly through the use of the Edge Impulse platform, has been a pivotal aspect of 

this research. The AI model was rigorously trained using a diverse dataset, ensuring its 

robustness and reliability. The use of Convolutional Neural Networks (CNN) and 

meticulous data labelling has allowed the model to accurately recognize fires under 

various conditions, including different lighting and environmental scenarios. The 

successful detection of fires in real-world tests underscores the model’s efficacy, 

providing a reliable tool for early fire detection and prevention. 

  Furthermore, the comprehensive system design of the autonomous drone was 

crafted with precision to meet specific environmental requirements. This included the 

integration of thermal cameras, GPS navigation, and real-time communication 

capabilities, which together ensure that the drone can operate autonomously in 

challenging terrains and provide continuous monitoring without human intervention.   

  The robustness of the system architecture allows for effective and reliable 

performance, even in diverse and complex forest environments. 

In conclusion, the successful development and deployment of the autonomous drone 

system for early detection of forest fires represent a milestone in environmental 

technology. This research not only highlights the potential applications of such systems 

in real-world scenarios but also underscores the importance of integrating advanced AI 

and drone technologies in safeguarding our natural resources. The precise identification 

and rapid response capabilities of the system promise to enhance safety measures, 

offering a reliable and innovative tool for protecting forests and communities from the 

threat of wildfires. 

 
REFERENCES 

 

[1]. Choudhary C., Shukla, P., A Robust Machine Learning Model for Forest Fire 

Detection Using Drone Images, Advances in Aerial Sensing and Imaging, pp. 129-144, 2024. 

[2]. Puttapirat P., Woradit K., Hesse H., Bhatia D., FireFly Project: UAV 

Development for Distributed Sensing of Forest Fires, International Conference on Unmanned 

Aircraft Systems (ICUAS), pp. 594-601, IEEE, 2024. 



DEVELOPING AN AUTONOMOUS DRONE FOR EARLY DETECTION  

OF FOREST FIRES 

306 

[3]. Filist S., Al-Kasasbeh R. T., Tomakova R. A., Al-Fugara A. K., Al-Habahbeh 

O. M., Shatolova O., Maksim I., An unmanned aerial vehicle autonomous flight trajectory 

planning method and algorithm for the early detection of the ignition source during fire 

monitoring, International Journal of Remote Sensing, Vol. 45, No. 12, pp. 4178-4197, 2024. 

[4]. De la Fuente R., Aguayo M. M., Contreras-Bolton C., An optimization-based 

approach for an integrated forest fire monitoring system with multiple technologies and 

surveillance drones, European Journal of Operational Research, Vol. 313, No. 2, pp. 435-451, 

2024. 

[5]. Bauhus J., Forrester D. I., Gardiner B., Jactel H., Vallejo R., Pretzsch H., 
Ecological Stability of Mixed-Species Forests, Pretzsch, H., Forrester, D., Bauhus, J. (Eds), 

Mixed-Species Forests, Springer, Berlin, Heidelberg, 2017. 

[6]. Lundquist J. E., Camp A. E., Tyrrell M. L., Seybold S. J., Cannon P., Lodge 

D. J., Earth, wind, and fire: Abiotic factors and the impacts of global environmental change on 

forest health, Castello, J. D., Teale, S. A. (Eds), Forest Health: An Integrated Perspective, pp. 

195–244, Cambridge: Cambridge University Press, 2011. 

[7]. Cours J., Bouget C., Barsoum N., et al., Surviving in Changing Forests: Abiotic 

Disturbance Legacy Effects on Arthropod Communities of Temperate Forests, Current Forestry 

Reports, Vol. 9, pp. 189–218, 2023. 

[8]. Negru N., Radu S. M., Soica A., Air Quality Monitoring and Photovoltaic Impact 

Assessment in Valea Jiului, 25th International Carpathian Control Conference (ICCC), pp. 1-6, 

IEEE, 2024. 

[9]. Samuil I., Stancioiu L., Ionica A. C., Leba M., Possibilities of Adopting Electric 

Vehicles in the Agritourism Development Context, 18th Iberian Conference on Information 

Systems and Technologies (CISTI), pp. 1-6, IEEE, 2023. 

[10]. Rus C., Lupulescu E., Leba M., Risteiu M., Advanced Mathematical Modeling 

and Control Strategies for Autonomous Drone Systems, 25th International Carpathian Control 

Conference (ICCC), pp. 1-6, IEEE, 2024. 

[11]. Narahari S. C., Polaboina U. R., Rishika K., Gudipalli A., IoT-based fire and 

traffic density detection using AI-based drone, AIP Conference Proceedings, Vol. 2966, No. 1, 

AIP Publishing, 2024. 

[12]. Gamulescu O., Leba M., Ionica A., Exploring the Convolutional Neural 

Networks Architectures for Quadcopter Crop Monitoring, World Conference on Information 

Systems and Technologies, pp. 225-234, Cham: Springer Nature Switzerland, 2024. 


